I’ve discussed “The Immutable Laws of Physics” a few times in previous articles. Every shred of evidence we have indicates that the interactions between matter, energy, time, and space, are themselves the very nature of the universe, and nothing we (or anything/anyone else) can do will ever change these interactions. Whenever we’ve observed or discovered something new that we don’t understand, it reminds us that we have incomplete understanding of the laws of physics – but the physical world is still immutable.

Quantum mechanics is a “relatively new” branch of physics that was discovered roughly 100 years ago, and it has certainly enhanced our understanding of these physical interactions. It has also made things quite a bit more complicated, as quantum mechanics embodies concepts which are quite difficult to grasp. The concepts are not as elegant as the pure logic behind classical “Newtonian physics”, or the mind-bending beauty of Einstein’s discovery of relativity.

One of the problems is that quantum mechanics have a large component that has to do with randomness. Changes in quantum states are thought to be the only truly random physical interactions in the whole universe!

One question that often comes up is this: how do we account for the randomness of quantum mechanics if the fundamental laws of physics are so perfect and so immutable? Why don’t our traditional laws of physics clash with the crazy and unpredictable nature of this randomness, the particle/wave duality, and Heisenberg's uncertainty principle? And while we’re at it, what do we feed to Schrödinger’s much maligned cat?

Quantum mathematics are somewhat abstract, yet exceedingly precise. The math has been verified experimentally to within one part in __ many__ billions; the measured data agrees with the theoretical equations to the limits of our measurement technology. This is a very key point.

As a practical example, every time a transistor switches on and off in a computer, there is a “quantum band gap” that each electron goes through. If we could somehow “see” each electron that is pushed up against the junction of a transistor, we would not be able to tell which specific electrons would make it through the gap and which ones wouldn’t. The quantum state of each individual electron is completely random. However, we can say – very, very precisely – how many in total will go through and at what energy levels.

Advancements in manufacturing technologies, resulting in less impurities (i.e. stray molecules of unwanted substances) in the silicon junction, More...